Cleft Extensions of Hopf Algebroids

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cleft Extensions of Hopf Algebroids

The notions of a cleft extension and a cross product with a Hopf algebroid are introduced and studied. In particular it is shown that an extension (with a Hopf algebroid H = (HL,HR)) is cleft if and only if it is HR-Galois and has a normal basis property relative to the base ring L of HL. Cleft extensions are identified as crossed products with invertible cocycles. The relationship between the ...

متن کامل

Pseudo-galois Extensions and Hopf Algebroids

Pseudo-Galois extensions are shown to be depth two extensions. Studying its left bialgebroid, we construct an enveloping Hopf algebroid for the semi-direct product of groups or involutive Hopf algebras and their module algebras. It is a type of cofibered sum of two inclusions of the Hopf algebra into the semi-direct product and its derived right crossed product. Van Oystaeyen and Panaite observ...

متن کامل

On Cohomology of Hopf Algebroids

Inspired by [3] we introduce the concept of extended Hopf algebra and consider their cyclic cohomology in the spirit of Connes-Moscovici [3, 4, 5]. Extended Hopf algebras are closely related, but different from, Hopf algebroids. Their definition is motivated by attempting to define cyclic cohomology of Hopf algebroids in general. Many of Hopf algebra like structures, including the Connes-Moscov...

متن کامل

Crossed Products and Cleft Extensions for Coquasi-hopf Algebras

The notion of crossed product with a coquasi-Hopf algebra H is introduced and studied. The result of such a crossed product is an algebra in the monoidal category of right H-comodules. We give necessary and sufficient conditions for two crossed products to be equivalent. Then, two structure theorems for coquasi Hopf modules are given. First, these are relative Hopf modules over the crossed prod...

متن کامل

Hopf Algebroids and quantum groupoids

We introduce the notion of Hopf algebroids, in which neither the total algebras nor the base algebras are required to be commutative. We give a class of Hopf algebroids associated to module algebras of the Drinfeld doubles of Hopf algebras when the Rmatrices act properly. When this construction is applied to quantum groups, we get examples of quantum groupoids, which are semi-classical limits o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Categorical Structures

سال: 2006

ISSN: 0927-2852,1572-9095

DOI: 10.1007/s10485-006-9043-6